

NAO-003-001618 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2017

Mathematics: BSMT-603

Faculty Code : 003 Subject Code : 001618

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- 1 Answer the following questions briefly: 20
 - (1) Define: Convex Linear Combination.
 - (2) Define: Optimum solution of LPP.
 - (3) If $f(x) = x^3$ then find f(1,3,5,7).
 - (4) In Simpon's $\frac{1}{3}$ rule what is the form of the function f(x)?
 - (5) State the matrix form of LPP.
 - (6) Define: Extreme points.
 - (7) Bessel's Formula is better suited if -----. Complete the statement to make it true.
 - (8) Write the full form of NWCM.
 - (9) Define: Non-Degenerate B.F.S.
 - (10) When do we use VAM to solve transportation problem?
 - (11) Which types of differential equation can be solved using the Picard's method?
 - $(12) \ \ State \ Gauss-Backward \ interpolation \ Formula.$
 - (13) What is Interpolation?
 - (14) If $y_2 = 10$, $y_1 = 8$, $y_0 = 5$, $y_{-1} = 10$ then find $y_{\frac{1}{2}}$.
 - (15) Which formula is known as Newton-Cot's formula?
 - (16) Interpolating x corresponding to a certain value of y is known as-----. Fill in the blank.
 - (17) Find the value of $\int_{2}^{6} \frac{dx}{x}$ by trapezoidal rule.

- (18) Solve the differential equation $\frac{dy}{dx} = x + y$. Obtain the second approximation of y at x = 0.1 by Picard's method, the initial condition is y(0) = 1.
- (19) What is the special case of Bessel's formula?
- (20) Write the Euler's improved method.
- 2 (a) Attempt any three:

6

- (1) Derive the relation between divided differences and forward differences (any four).
- (2) In usual notation prove that

$$D = \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \right].$$

- (3) Find the value of *y* at x = 0.2, 0.4, 0.6, 0.8 by Euler's method $\frac{dy}{dx} = 2x + y, y(0) = 1.$
- (4) Obtain the value of f'(90) using Strling's formula to the following data:

	x	60	75	90	105	120
•	f(x)	28.2	38.2	43.2	40.9	37.7

- (5) Write Lagrange's interpolation formula.
- (6) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by using Simpon's $\frac{3}{8}$ formula.
- (b) Attempt any **three**:

9

- (1) Solve $\frac{dy}{dx} = 3x + y^2$, y(1) = 1.2. Obtain the value of y for x = 1.1, 1.2 by Range's method.
- (2) Find the value of y at x = 0.2 by Taylor's method $y = 2y + 3e^x$, y(0) = 0.
- (3) Given

θ	0°	5°	10°	15°	20°	25°	30°
tan 0	0	0.875	0.1763	0.2679	0.3640	0.4663	0.5774

Then show that $\tan 16^{\circ} = 0.2867$ using Stirling's formula.

- Solve differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ by **(4)** Taylor's method.
- (5)Derive: Trapezoidal Rule.
- Derive Laplace- Everet's formula. (6)

(c) Attempt any two:

10

- Derive Bessel's formula for central differentiation. (1)
- **(2)** Derive Milne- Thomson Predictor-Corrector formula.
- Using Gauss forward interpolation formula find y at (3)x = 1.7489 given that

x	1.72	1.73	1.74	1.75	1.76	1.77	1.78
у	0.1791	0.1773	0.1775	0.1738	0.1720	0.1703	0.1686

- Derive Simpon's $\frac{3}{8}$ rule. **(4)**
- Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 0.3$ **(5)** using (i) Euler's method (ii) Improved Euler's method (iii) Modified Euler's method, by choosing h = 0.1.

$\mathbf{3}$ Attempt any three: (a)

6

- Define: Slack variables w.r.t LPP. (1)
 - Define: Unbounded solution of LPP.
- $Maximize Z = 11x_1 + 9x_2$ (2) Subject to $3x_1 + 2x_2 \le 8$ Where $x_1, x_2 \ge 0$ $2x_1 + 3x_2 \le 7$ Using graphical method.
- What is the full-form of NWCH? (3) (i)
 - (ii)What is the full-form of LCM?
- **(4)** (i) Define: Basic Feasible Solution.
 - Define: Optimal Solution.
- State the general mathematical form of LPP. **(5)**
- (6) State the general mathematical form of LPP from assignment problem.

(b) Attempt any three:

9

- Explain the steps of VAM to find initial solution of transportation problem.
- **(2)** Explain the steps of two phase method to solve the LPP.
- Explain Primal-dual relationship for LPP. (3)
- Solve the following LPP by using two phase method (4) $Minimize Z = x_1 + x_2$ Subject to $2x_1 + x_2 \ge 4$ Where $x_1, x_2 \ge 0$ $x_1 + 7x_2 \ge 7$

$$x_1^{1} + 7x_2^{2} \ge 7$$

- (5) Explain: Mathematical formulation of an assignment problem.
- (6) Obtain the INITIAL solution of given transportation problem using NWCM method :

	To	D_1	D_2	D_3	D_4	Supply
	O_1	6	4	1	5	14
From	O_2	8	9	2	7	16
	O_3	4	3	6	2	5
	Demand	6	10	15	4	35

(c) Attempt any two:

- 10
- (1) Explain BIG M method to solve the LPP.
- (2) Explain Hungarian method to solve an assignment problem.
- (3) Find initial basic feasible solution for given problem by using
 - (a) North-West corner rule.
 - (b) Least cost method.
 - (c) Vogel's approximation method.

 If the object is to minimize the total transportation cost:

		D_1	D_2	D_3	D_4	
From	P_1	2	3	11	7	6
	P_2	1	0	6	1	1
	P_3	5	8	15	9	10
	Demand	7	5	3	2	

(4) Solve the following transportation problem:

	$D_{\mathbf{l}}$	D_2	D_3	D_4	Supply
S_1	19	30	50	10	07
S_2	70	30	40	60	9
S_3	40	10	60	20	18
Demand	5	8	7	14	34

(5) Solve the following assignment problem:

N	ΙEΝ	A	В	С
TASK	TASK 1		100	80
	2	80	90	110
	3	110	140	120